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SUMMARY 
Waves generated by submarine landslides are treated as three-dimensional flows of a perfect incompressible 
fluid. For the solution of the Cauchy-Poisson problem a time-discretization is applied which leads at each 
time step to a non-homogeneous free surface condition; the solution is then divided into two parts. The first 
part, subject to the true free surface condition, is computed in a simplified domain with constant depth. The 
second part involves a homogeneous free surface condition, a corrected bottom condition and the true 
bathymetry. In the case of constant depth, unconditional stability of the time discretization is derived. In the 
case of variable depth, mass and energy conservation is derived. Numerical results are presented. Com- 
parison is made with other methods for the generation of axisymmetric waves. The transient propagation 
along a rectilinear coast is studied, including a comparison between two different bathymetries; trapping of 
energy is observed. 
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1. INTRODUCTION 

Submarine landslides involving large volumes of unstable sediments and rocks can produce water 
waves of considerable height which propagate over great distances. For instance, at Nice (France) 
in 1979 a subsidence of nearly lo7 m3 of alluvion occurred at the Var river mouth. The resulting 
wave amplitude was still 3 m when recorded at a distance of 9 km from the perturbation area. A 
frequent phenomenon is the trapping of energy around an island or along a coast. In such a case 
an accurate description of the bathymetry and source with respect to space and time is necessary 
during the initial wave formation as well as during the subsequent propagation. In the present 
paper three-dimensional linear models are considered within the framework of potential theory 
and unsteady free surface fluid flows. First our numerical technique is detailed, whose aim is to 
avoid using the unstationary Green functionlV2 by introducing a time discretization. Then results 
are presented; comparisons are made with industrial codes in axisymmetric cases, and propaga- 
tion along a coast is studied for two different shapes of the bathymetry. 
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2. NUMERICAL METHOD 

2.1. The linear model 

Let (x, y ,  z, t )  denote Cartesian co-ordinates and time with the z-axis pointing in the opposite 
direction from the gravitational force. The irrotational flow of a perfect and incompressible fluid 
with an isobaric free surface is considered around an island. The fluid motion being due to some 
movement of the bathymetry, both the amplitude and slope of the resulting surface waves are 
assumed to be small, so that infinitesimal wave theory applies. All material displacements being 
neglected to first order, only submarine ground velocities are transmitted to the water for 
propagation. The linearized fluid domain consists of the complementary of a three-dimensional 
bounded set standing for the island in a region limited by two horizontal planes, D being the 
distance between the planes (Figure 1). 

Let us recall the classical dimensionless equations of infinitesimal wave theory,’ 

with the following notation (Figure 2) :  

cp velocity potential 
y source term 
R fluid domain 
r variable depth boundary 
r- constant depth boundary 
To linearized free surface. 

The initial conditions are given by 

cp=O o n r , ,  

& ( p = O  on To. 

l - -_---____-____~_______._________________~_I ,’ flat bottom 

Figure 1. Fluid domain around a three-dimensional island with constant water depth beyond some distance 
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z = - 0 .  
Y L X  r o  

Figure 2. Notation for the dimensionless linearized problem in real geometry 

The free surface elevation q is obtained a posteriori by means of the relation 

The length scale is D and the speed scale is (gD) ' / z ,  g being the acceleration due to gravity. 
Let us point out that equation (2) stands for the source phenomenon, which is taken into 

account by enforcing the normal velocity component of r. Actually the support of y may be 
restricted to a subset of r. 

2.2. Time discretization 

Let At be some constant positive time step. For every integer p ,  q p ( x , y , z )  denotes the 
approximation of q ( x ,  y ,  z ,  pAt)  which arises from the solution of the following sequence of 
problems: 

v 2 q p = o  in S Z ,  (8) 

& q P =  y (pAt )  on r, (9) 

a z q P = o  on 1--1, (10) 

(11) At - 2 (  q p -  2 q P - '  + ( P P - ~ )  + a z [ z q p  + (1 - 2 z ) q P - ' +  z ~ p p - ~ ]  = 0 on To. 

Equation (1 1) is nothing but a classical centred ~ c h e m e . ~  
Now the intermediate function 

x p  = t q p  + (1 - 2 r ) q P -  + t q p - 2  

fulfils the conditions 

V Z x P = O  in R, 

a n X P +  on r, 
a Z X P = o  on r-', 

a, x p  + p f  = p q p -  ' on To, 
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yp=~y(pAt)+(l-2t)y[(p-  l)At]+zy[(p-2)At] on r, (17) 

p = z At- 2 .  (18) 

' p - l = O  on To, (19) 

p 0 = O  on To. (20) 

The initial conditions are 

We are then concerned with the numerical calculation of x P  at each time step. Two different 
right-hand sides can be found in the XP-problem. The first ( y p )  is the source refreshing which is 
localized on the bounded set T, while the second ( c p p - ' )  stands for the wave propagation and 
tends to spread over the unbounded set To as time passes. At each time step the work is divided 
into two parts, each devoted to one of these two right-hand sides. 

One must notice that avoiding the introduction of x P  would have led to a more complicated 
expression of the right-hand side in (16), including vertical derivatives of qP- l  and c p p - 2 .  

2.3. Propagation step 

Throughout the present subsection we leave out the real geometry to consider the whole 
domain between the two horizontal planes of respective altitudes minus one and zero. This 
domain ( I Q l )  is called the extended Auid domain, while the two planes (Ir- I and I To]) are called 
the extended constant depth boundary and the extended linearized free surface respectively 
(Figure 3). Let us now introduce the new function $ P  which satisfies the following conditions: 

v211 /p=o  in IQl, (21) 

with 4p- '  being any regular extension of qP-' from To to lrol. 

x and y. For any suitable functionf(x, y )  its transform is denoted Ff; one recalls 
The exact solution of the ll/P-problem is carried out by Fourier transformation with respect to 

Assuming integrals (24) and (25) make sense for bp-  ' , t,hp and its derivatives, we have 

FGP( & O ,  z ) =  F 4 P - l  (C;, 0) cosh p(z + l)/(p sinh p + p  cosh p). (26) 

= 2 4 p  + e 2 ) 1 / 2 .  (27) 

with 

Now $ p  and its derivatives are obtained by means of the inverse Fourier transform. 
Two sets of regularly distributed grid nodes are involved in the numerical computations 

(Figure 4). The first (S) represents the (x, y )-plane and the second (FS) represents the ( r ,  8)-plane. 
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Figure 3. Notation for the propagation step problem in extended geometry; the island is not taken into account 

Y 0 

As soon as an approximation of 4p-1 (x, y) is known at each point of S, we successively 
calculate approximate values of 

(1) F 4  p -  (t, 0) on FS by a direct fast Fourier transform (FFT) algorithm 

(3) $ p ( x ,  y, 0) on S by an inverse FFT 
(4) tjP and its derivatives at any point (see Section 2.4.3) by evaluating 

(2) F$P(5,& 0) on FS by (26) 

(a) the Fourier transforms of I,P, 
(b) $ p ,  a#’, 

and ~?,$~(x, y, z )  on FS by (26) 
and aZ$”(x ,  y, z )  by (25) and a trapezoidal rule integration on FS. 

Let us pay attention to the three following remarks. First, all functions of (x, y ) or (t, 0) are 
considered negligible outside the region delimited by S or FS respectively. Secondly, using an 
FFT is not appropriate in the case (4b), since the results are to be provided for given points which 
are irregularly distributed, especially on r. Thirdly, it can be seen that the propagation step is 
finally reduced to a two-dimensional problem. 
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2.4. Generation step 

characteristics. 
In the present subsection the real geometry is taken into consideration as well as the source 

2.4.1. Homogeneous free surface condition. Let us now introduce the new function r p  such that 

x" = *" + p. (28) 
From (13)-(16), (21)-(23) and (28), i p  is found to fulfil the following system: 

It is to be noticed that x p  does not depend on the way qP-l is extended from To to I To I (see Section 
2.3), as opposed to r C / p  and r p  which are without physical meaning. 

Now one must solve a three-dimensional problem set in an unbounded domain where non- 
homogeneous conditions are restricted to bounded boundaries. It is thus possible to reduce the 
computation domain to a bounded one by means of an integral equation or a transparent 
boundary condition. 

To achieve this aim, several methods can be applied, e.g. 

(1) the classical boundary element method 
(2) the localized finite element method5-* 
(3) the coupling between finite elements and integral r ep resen ta t i~n .~~ '~  

Here the last one is retained, whose qualities are good convergence properties and great flexibility 
with regard to the choice of a suitable mesh. 

2.4.2. The coupling between finite elements and integral representation. Let us recall the main 
lines of this method. The Green function must first be introduced which satisfies 

6 denoting the Dirac measure and M being a point of co-ordinates ( x M , y , , z M )  such that 
-1 <z,<O. The numerical calculation of G ,  has been carried out by Cuer:" 

with 
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which is valid for any point M in the interior of R. 

r- l  and To are then divided into two subsets: 
We now introduce a fictitious boundary C surrounding r (Figure 5). All unbounded sets R, 

(1) a bounded one lying between r and C (( Q), (r- ) and (r, ) respectively) 
(2) an unbounded one lying outside C OR(, )r-l ( and )r,( respectively). 

Now the restriction of iP to ( S Z )  is the solution of a well-posed problem set in a bounded 

(1) restricting (29), (31) and (32) to ( S Z ) ,  (r-l) and (r,) respectively 
(2) including (30) 
(3) writing (40) for each point M on C. 

To compute the solution of this last problem, a finite element discretization is used. Since a 
non-local transparent boundary condition couples the two surfaces r and X, several specific 
terms are to be added to the classical finite element formulation. Provided that n C is empty, 
the location of C is arbitrary, so that the mesh is reduced to a layer of elements around r 
(Figure 6).  

Item (3) is a Dirichlet coupling;2 a Neumann coupling is obtained by applying the operator 8, 
to both sides of (40). In the case of a Dirichlet coupling the degrees of freedom located on C are 
eliminated from the linear system, whose matrix is partly full and asymmetric instead of being 
sparse and symmetric as in the usual methods. This drawback cannot be avoided as long as the 
total absorption of numerical reflections on boundaries is required. 

domain and resulting from 

L free surface 

coupling boundary 

(a) (b) 

Figure 5. (a) Arbitrary coupling boundary and (b) corresponding notation 
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Figure 6. (a) Surface gridding of real bathymetry. (b) One-layer finite element mesh for the generation step problem, built 
from (a) 

2.4.3. Plan of computation. Assuming a mesh has been chosen, the computation includes the 

(1) assembling the right-hand side of the finite element linear system 
(2) solving this linear system 
(3) restoring the solution on the whole free-surface. 

In step (1) approximate values of a , $ p  are calculated at each mesh point located on r (see item 
(4a) and (4b) of Section 2.3), while exact values of y p  are calculated at the same points with a given 
analytical function. All these values are then multiplied by the sum of a r x r mass matrix of 
classical type and a r x Z single-layer matrix of coupling type so as to form the right-hand side of 
the linear system. 

The matrix of the linear system consists of the sum of a R x fl-2 stiffness matrix of classical type 
and a r x X double-layer matrix of coupling type. Its inverse is calculated once and for all before 
starting the time loop. 

In step (3) an extension Z p  of C p  is calculated at each point of S (see Section 2.3) by interpolating 
two sets of approximate values of C p .  The first set, resulting directly from step (2), consists of the 
approximate values of r p  at each mesh point located on (ro). The second set consists of the 
approximate values of r p  at points located on )To ( and representative of the exterior free surface. 
These values are obtained by means of the integral representation (40), which involves two terms. 
For the first term, approximate values of and exact values of y p  at each mesh point located 
on r are multiplied by a r x )To ( single-layer matrix of coupling type. For the second term, 
approximate values of rp ,  obtained in step (2), at each mesh point located on r are multiplied by a 
r x )To ( double-layer matrix of coupling type. 

following three stages: 

The extension Z p  provides data in the empty area lrol\ro, then is applied on S :  

p = [lp + zp - (1 - 2 t ) 4 P -  - tp- 2 ] / 2 ,  (41) 
so that the next propagation step is ready to be executed. 

Finally, it can be seen that the generation step is reduced to a nearly two-dimensional problem. 

2.5. Properties of the numerical scheme 

The convergence of the whole method cannot be immediately derived from general results,12~13 
since both the Fourier analysis and variational approach are combined. However, the following 
considerations can provide some insight. 
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2.5.1. Unconditional stability in the case of constant depth. Let us introduce the following 
initial boundary value problem, which represents transient wave propagation over a flat bottom: 

V 2 q = 0  in ln l ,  (42) 

a , (p=O on lrl1, (43) 

4,cp+&cp=O on II-01, (44) 

q=qo onI ro l  a t t=O,  (45) 

atq=ql on Irol at t = O ,  (46) 

where q=Cp(x,y, z,  t ) ,  q o = c p o ( x , Y )  and q1=q1(x,y) .  

(b) Time-discretized solution. In the case of constant depth the developments of Section 2.4 are 
useless. It is easy to see that the method described in Sections 2.2-2.4 is then reduced to the 
following scheme: 

~ F q p +  [ w 2 / ( o z  +p)- 251 F q P - '  + zFqP-' =O on I l-0 I. (53) 

(54) 

When p = 0, we have 

FqP(O, O,O)=FqO(O, O)+p[Fq'(O, O)-Fqo(O, 011, 

which fits (49) well. 
When pZ0, it is convenient to denote by x1 and x2 the roots of the polynomial 

n(x) = 7x2 + [ o Z / ( 0 2  + p )  - 27)x + z. (55) 

For x lxz  = 1 the classical stability criterion is fulfilled if and only if x1 and x2 have the following 
form: 

1- - e i A ( ~ )  2 -  -e-i.W), (56) 

which is true as soon as 

( $ - 7 ) A t 2 0 2 c  1. (57) 
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In particular, a class of unconditionally stable schemes is obtained with za$. From now on, 
(57) is assumed to be satisfied. 

Then, with 

A -  (5,e) =$[F'po -i(F'p'/sin 1- F'po/tan A)] ((,& 0), (58) 

A + ( ( ,  8)=Q[Fqo+i(F'p'/sin1-Fqo/tan1)](<, &O),  (59) 

(60) 

we obtain 

F 'pp(  {,8,0) = A - ( 5 ,  8)eiP + A + (5,O)e- ipL(p) .  

(c)  Minimization of error. Now, taking (52) and (60) into consideration, with t =pAt, it is clear 
that A t o  and A must be as close as possible in order to minimize numerical dispersion. This can be 
measured by means of the following two series: 

W 

22(1 - c o s J J = ~ A ~ ~ w ~ / ( ~ A ~ ~ ~ ~ +  I )=  C ( - I ) ~ + % ~ ( A ~ W ) ~ ~ ,  
n= 1 

m 

n= 1 
2t[l -cos(A~w)]=~T C ( - l )"+'(At~0)~"/(2n)!;  (62) 

(61) follows from (18), (55) and (56), while (62) is derived from the usual cosine series. The two first 
terms in (61) and (62) are always equal, while the absolute value of the difference between the two 
second terms is equal to 1 t ( T  -A) 1 (Am)'. 

This leads to the following two conclusions for the case of constant depth: one obtains 

(1) the best precision with z = 
(2) the most accuracy between the unconditionally stable schemes with z=$. 

2.5.2. Muss and energy conservation. Let us now go back to the case of variable depth, for 
which a variational formulation can be derived from (8)-(11). When y =0, for any suitable test 
function f (x, y ,  z )  we have 

6 V [ ~ ' p ~ + ( l - 2 . ) p ~ - ' + z ' p ~ - ~ ,  .Vfdo+ At-2(cpp-2qP-1+cpp-2)fds=0. (63) I, 
First, choosing f = At, we have M P  = M for every integer p ,  with 

MP = jro At-' ( ' p p  - ds. (64) 

Secondly, choosing f = ' p P - ' p p - 2 ,  we have EP=E'  for every integer p ,  with 

E P  = V q p  - V'pp-' dv + 
In particular, when z = $, we have 

T I  V( ' p p  - pP-l)l do + Atw2( qp - ' p p -  1 ) 2  ds. (65) I b ro 

E p = a 1 V( ' p p  + qPd1) 1 dv + At-  '( q p -  'p p -  i )  ds. (66) .Lo 
The conservation of mass is expressed by (64), while (65) and (66) are the equivalent for energy. 
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3.  NUMERICAL RESULTS 

Let us present some numerical results. First a simple application with constant depth is presented 
which partly validates the numerical method. Then propagation along a rectilinear coast due to 
an inshore localized source is considered. 

3.1. Free surface displacements above a moving bottom 

motion of the bottom, a comparison was established between three different programmes: 
To test the capacity of our programme to simulate the formation of water waves generated by a 

(1) PISCES-a two-dimensional finite differences code including non-linear compressible 

(2) SOLA-VOF-a two-dimensional finite differences code including free surface 

(3) MELINA-a three-dimensional finite element and integral representation code with 

For PISCES and SOLA-VOF the model is a cylindrical box full of water with a small empty 
cylinder beneath its bottom (Figure 7). The initial water depth, height and radius of the cylinder 
are denoted D, H and R respectively. At time t = O  water from the box is allowed to fill the 
cylinder. During the calculation the normal flux through the bottom of the box into the cylinder is 
recorded. Taking averages in both time and space over that boundary, an equivalent fluid 
velocity V is found. This velocity is then used as a boundary condition for MELINA (Figure 8), 
with such a duration T that the total mass flux corresponds to the volume of the cylinder, 
i.e. VT= H .  Tests were run with D = 100, 300 and 500 m, while in all cases H = 100 m and 
R = 150 m. For MELINA, D has the same definition as in Section 2.1. 

Each of Figures 9-12 gives a comparison between the results of PISCES, SOLA-VOF and 
MELINA. Figures 9 and 10 show for D = 100 and 300  m respectively the comparative variations 
of the trough at the epicentre with respect to time. Figures 11 and 12 show for D = 100 and 300  m 
respectively the comparative free surface profiles with respect to the radial distance from the 

equations in a vertical plane with axi~ymmetry'~. 

Navier-Stokes equations in a vertical plane with axisymmetry'6 

special routines including the features of Section 2. 

f- epicentre =+ 

I 

I 

. ~ -  3 
R 

Figure 7. Axisymmetric wave formation model for PISCES and SOLA-VOF 
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Figure 8. Axisymmetric wave formation model for MELINA 

Figure 9. Evolution of trough at epicentre for D = 100 m 

epicentre. All free surface profiles are plotted when the trough is a maximum, which always occurs 
at the epicentre but not at exactly the same time, depending on each code. All maximum troughs 
are given in Table I; if a is the ratio of the maximum trough over D, then ~ 2 0 . 5  in the case 
D =  100 m, while aG0.1 in the cases D =  300 and 500 m, where the comparison between free 
surface profiles is satisfactory. This is in good agreement with the well-known practical linearity 
criterion a < 0.1. The roughness of the source model applied in MELINA does not appear to be 
very penalizing, since the created waves are not very sensitive to source details. 
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Figure 10. Evolution of trough at epicentre for D = 300 m 

C 0 
.- 

Figure 11. Free surface profile of maximum amplitude for D = 100 m 

Table I 

Code 
Case PISCES SOLA-VOF MELINA 

D=100m 71 m 78 m 64 m 
D=300m 19 m 19 m 18 m 
D=500m 8m 8 m  8m 
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Figure 12. Free surface profile of maximum amplitude for D =  300 m 

Figure 13. Three-dimensional propagation model along a rectilinear coast 

The results of MELINA seem to be validated as long as the linearity hypothesis is justified. 
However, that validation remains only partial since it is done with a constant depth geometry. In 
fact, only elemehts of Section 2.3 have been tested here. 

3.2. Propagation along a rectilinear coast 

landslides. 
The interest is now focused on more realistic simulations of waves generated by submarine 

3.2.1. The simulations. Throughout the present subsection, D =  loo0 m (see Section 2.1), so 
that x, y and z are expressed in kilometres. Invariance of the bathymetry is assumed for any 
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km Z rn subsiding volume 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 km 

Figure 14. Vertical shape bathymetry 

km Z subsiding volume 

417 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 km 

Figure 15. Inclined shape bathymetry 

translation parallel to the y-axis, as well as wave symmetry with respect to y. This model can be 
handled by MELINA if a sufficiently long island is considered. 

To show the free surface elevation q, the following notation is used (Figure 13): 

x 2 0: offshore distance, 
y 2 0: coastal distance, 
q for x 2 0 and y = 0: offshore wave, 
q for x = 0 and y 2 0: coastal wave, 
q for x 2 0  and y 2 0 :  wave field. 
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5 10 15 20 25 30 35 40 
offshore-coastal distance -km 

Figure 16. Comparison between offshore wave and coastal wave at 150 s for vertical shape 
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Figure 17. Comparison between offshore wave and coastal wave at 300 s for vertical shape 

The bathymetry being defined-by its shape in the (x, z)-plane, a comparison was established 
between a vertical shape and an inclined shape with similar sources (Figures 14 and 15). In both 
cases the source consists of a subsidence of the sea bottom delimited by 0.9,<x,<1.4 and 
- 0 3  ~ y G 0 . 3 .  The same ground volume of 16.2 x lo6 m3 is assumed to subside within a 30 s 
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Figure 18. Comparison between offshore wave and coastal wave at 150 s for inclined shape 
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Figure 19. Comparison between offshore wave and coastal wave at 300 s for inclined shape 

duration. For the vertical shape a normal velocity of 1-8 ms- '  is applied uniformly over a 
horizontal rectangular bottom area of 500 m by 600 m with lo00 m water depth. For the inclined 
shape a normal velocity of 1.5 m s- is applied uniformly over an inclined square bottom area of 
600m by 600m with water depth between 700 and 1OOOm. 
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Figure 20. Wave field at 300 s for inclined shape 

Figures 1 6 1 9  compare offshore and coastal waves after 150 and 300 s of propagation for both 
shapes. Figure 20 shows a perspective view of the wave field after 300 s of propagation for the 
inclined shape. 

Let #I be the ratio of maximum crest to trough in a coastal wave over the same in an offshore 
wave. For the vertical shape it is found that #I= 1.6 at 150 s and #I= 1.4 at 300 s; the wave field 
tends to become spherical. For the inclined shape it is found that #I=2.1 at 150 s and /?=4.5 at 
300 s; energy is trapped near the shore. 

This phenomenon is classical. In particular, when studying periodic waves with respect to both 
coastal distance and time, spectral theory shows that many rectilinear coasts are waveguides.' 7, I s  

3.2.2. Computational cost. The computational cost was the same for both shapes. The two- 
dimensional grid used for the propagation step contains 300 x 300 points, no symmmetry being 
taken into account. The three-dimensional mesh used for the generation step comprises lo00 
nodes, all symmetries being taken into account. With such grid and mesh refinements, 3 x lo6 
words are necessary to entirely run the application in the main memory of a CRAY-XMP 
computer. The result of Figure 20 is reached after 60 cycles, which took 2 h of CRAY-XMP 
computation time. These performances can undoubtedly be improved in a large way by 
FORTRAN optimization. 

4. CONCLUSIONS 

Within the framework of free surface linear hydrodynamics, a new computation method has been 
introduced. The discretization technique gives the velocity potential at each point of a wide free 
surface. This is realized by means of repeated fast Fourier transformation of the two-dimensional 
wave field, while a fixed three-dimensional free surface piercing object is taken into account by 
coupling finite elements and integral representation. In this way the convolution term with 
respect to time is avoided which appears when using methods based on the unstationary Green 
function. Thus calculations can be done over longer periods. 
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In the case of a wave generated by an axisymmetric source located on a flat ocean bottom, the 
results are in good agreement when in the linearity domain with those obtained from the two- 
dimensional, non-linear, compressible or Navier-Stokes, finite differences codes. Three-dimen- 
sional propagation tests show that energy can be trapped along a coast. For a realistic shape of 
the bathymetry the amplitude of a coastal wave reaches more than four times that of an offshore 
wave. Therefore a three-dimensional approach is absolutely necessary when dealing with the 
propagation of water waves in real cases. 

A possible application of the technique which has been presented lies in the simulation of 
tsunami generation from submarine earthquakes. This phenomenon can indeed be considered 
linear when it occurs at sufficient depth. 
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